2024
  1. UIST
    Clarify: Improving Model Robustness With Natural Language Corrections
    Yoonho Lee, Michelle Lam, Helena Vasconcelos, Michael S. Bernstein, Chelsea Finn
    UIST 2024
    NeurIPS 2023 Workshops: XAIA, ICBINB
    [abstract] [paper] [code]
  2. TMLR
    Conservative Prediction via Data-Driven Confidence Minimization
    Caroline Choi*, Fahim Tajwar*, Yoonho Lee*, Huaxiu Yao, Ananya Kumar, Chelsea Finn
    TMLR 2024
    ICLR 2023 workshops: TrustML, ME-FoMo
    [abstract] [paper] [code]
  3. NeurIPS-W
    Robust Fine-Tuning by Learning the Objective with Bi-Level Optimization
    Caroline Choi*, Yoonho Lee*, Annie S. Chen, Allan Zhou, Aditi Raghunathan, Chelsea Finn
    NeurIPS 2023 Workshop on Distribution Shifts [abstract] [paper] [code]
  4. ICLR
    Project and Probe: Sample-Efficient Domain Adaptation by Interpolating Orthogonal Features
    Annie S. Chen*, Yoonho Lee*, Amrith Setlur, Sergey Levine, Chelsea Finn
    ICLR 2024 (Spotlight Presentation, top 5%)
    ICLR 2023 workshops: TrustML (Oral), ME-FoMo
    [abstract] [paper]
  5. ICLR
    Self-Guided Masked Autoencoders for Domain-Agnostic Self-Supervised Learning
    Johnathan Wenjia Xie, Yoonho Lee, Annie S. Chen, Chelsea Finn
    ICLR 2024 [abstract] [paper]
  6. ICLR-W
    Calibrating Language Models With Adaptive Temperature Scaling
    Johnathan Wenjia Xie*, Annie S. Chen*, Yoonho Lee, Eric Mitchell, Chelsea Finn
    ICLR 2024 Workshop on Secure and Trustworthy LLMs [abstract] [paper]
2023
  1. ICLR-W
    Confidence-Based Model Selection: When to Take Shortcuts for Subpopulation Shifts
    Annie S. Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, Chelsea Finn
    NeurIPS 2023 Workshop on Distribution Shifts [abstract] [paper]
  2. ICML
    DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature
    Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, Chelsea Finn
    ICML 2023 (Oral Presentation, top 3%) [abstract] [paper] [website] [code] [demo]
  3. ICLR
    Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
    Yoonho Lee*, Annie S. Chen*, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, Chelsea Finn
    ICLR 2023
    NeurIPS 2022 Workshops: DistShift, ICBINB
    [abstract] [paper] [code]
  4. ICLR
    Diversify and Disambiguate: Out-of-Distribution Robustness via Disagreement
    Yoonho Lee, Huaxiu Yao, Chelsea Finn
    ICLR 2023
    ICML workshops: PODS, SCIS
    [abstract] [paper] [website] [code]
2022
  1. NeurIPS-W
    Relaxing the Kolmogorov Structure Function for Realistic Computational Constraints
    Yoonho Lee, Chelsea Finn, Stefano Ermon
    NeurIPS 2022 Workshop on Information-Theoretic Principles in Cognitive Systems [abstract] [paper]
  2. NeurIPS
    Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
    Huaxiu Yao*, Caroline Choi*, Bochuan Cao, Yoonho Lee, Pang Wei Koh, Chelsea Finn
    NeurIPS 2022 Datasets & Benchmarks Track
    ICML 2022 Shift Happens Workshop
    [abstract] [paper] [code]
  3. NeurIPS
    On Divergence Measures for Bayesian Pseudocoresets
    Balhae Kim, Jungwon Choi, Seanie Lee, Yoonho Lee, Jung-Woo Ha, Juho Lee
    NeurIPS 2022 [abstract] [paper] [code]
  4. Entropy
    Discrete Infomax Codes for Supervised Representation Learning
    Yoonho Lee, Wonjae Kim, Wonpyo Park, Seungjin Choi
    Entropy Special Issue "Theory and Applications of Information Processing Algorithms" [abstract] [paper]
2021
  1. NeurIPS
    Diversity Matters When Learning From Ensembles
    Giung Nam*, Jongmin Yoon*, Yoonho Lee, Juho Lee
    NeurIPS 2021 [abstract] [paper] [code]
  2. ICML-W
    Amortized Probabilistic Detection of Communities in Graphs
    Yueqi Wang*, Yoonho Lee*, Pallab Basu, Juho Lee, Yee Whye Teh, Liam Paninski, Ari Pakman
    ICML 2024 SPIGM workshop [abstract] [paper] [code]
  3. UAI
    On the Distribution of Penultimate Activations of Classification Networks
    Minkyo Seo*, Yoonho Lee*, Suha Kwak
    UAI 2021 [abstract] [paper]
2020
  1. NeurIPS
    Bootstrapping Neural Processes
    Juho Lee*, Yoonho Lee*, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh
    NeurIPS 2020 [abstract] [paper] [video] [code]
  2. NeurIPS
    Neural Complexity Measures
    Yoonho Lee, Juho Lee, Sung Ju Hwang, Eunho Yang, Seungjin Choi
    NeurIPS 2020 [abstract] [paper] [video] [code]
2019
  1. NeurIPS-W
    Deep Amortized Clustering
    Juho Lee, Yoonho Lee, Yee Whye Teh
    NeurIPS 2019 Sets and Parts Workshop (oral) [abstract] [paper]
  2. NeurIPS
    Learning Dynamics of Attention: Human Prior for Interpretable Machine Reasoning
    Wonjae Kim, Yoonho Lee
    NeurIPS 2019 [abstract] [paper] [code]
  3. ICML
    Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
    Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, Yee Whye Teh
    ICML 2019 [abstract] [paper] [code]
2018
  1. ICML
    Gradient-based Meta-learning with Learned Layerwise Metric and Subspace
    Yoonho Lee, Seungjin Choi
    ICML 2018 [abstract] [paper] [video] [code]